

Caves & Rock Fracture Habitats on Earth, Mars, & Beyond

Penelope J. Boston

Director NASA Astrobiology Institute NASA Ames Research Center Moffett Field, CA 94035

"What's a Nice Girl Like You Doing in a Place Like... THAT?"

Image courtesy of T. Kieft

NASA Astrobiology Institute LIFE IN THE UNIVERSE

A Division of the NASA Astrobiology Program

Mars: NASA's Journey to Mars
Habitability
of Early Mars

Icy Worlds:
Habitability
and Life
Detection

Origin and
Nature of Life,
Co-evolution
with Planet Earth

NAI: US & Global Community

NASA Science Mission Directorate

Planetary Science Division

een...of NAI!

It's Good to be the Queen - By Paula Baker

- Competitively-selected science teams
 - ~320 senior scientists
 - ~280 postdocs and students
 - ~20 US Nat Acad Sci members
- ~600 members
 - ~320 senior scientists
 - ~280 postdocs and students
 - ~20 US Nat Acad Sci members
- ~100 participating institutions
- NAI Central NASA Ames Research Ctr
- Programmatics

 Astrobiology Program at HQ

Current Lead Institutions

- Massachusetts Institute of Technology
- University of Illinois at Urbana-Champaign
- University of Southern California
- University of Wisconsin
- VPL at University of Washington
- NASA Goddard Space Flight Center
- NASA Ames Research Center
- NASA Jet Propulsion Laboratory
- SETI Institute
- University of Colorado in Boulder
- University of California, Riverside
- University of Montana in Missoula

Astrobiology JOB 1:

Figuring out possible lifeforms from first principles!

Astrobiology

addresses three fundamental questions:

How does life begin and evolve?

Does life exist elsewhere in the universe?

What is the future of life on Earth and beyond?

Subsurface Rock Habitats

Hmmm...
I keep thinking I hear zillions of tiny voices....
it must be
Cave Madness! Hey hey hey! 'We're over here!!!-Humans aren't very smart, are they?

Snowy River Passage, Ft. Stanton Cave, NM Image by J. Ganter

Subsurface Environments

- No sunlight (past the twilight zone)
- High humidity
- Temperatures constant
- Low organic nutrients
- Mineral-rich
- Unusual chemical energy sources (e.g. H₂S)
- No surface weather
- Splendid preservation environment!

Entrance Drop Lechuguilla Cave, NM Photo courtesy of David Jagnow

What is Geomicrobiology?

Microorganism interactions with rocks and minerals

What do microbes do?

Transform materials

Destroy bedrock

Precipitate biominerals actively & passively

Significance of Geomicrobiology

- Geological weathering agents
- Economic minerals
- Unusual minerals
- Low temperature enzymes
- Pharmaceutical potential
- Unknown organisms & biochemistry
- Origins of life & early evolution
- Astrobiology

...the search for life in the universe...

By courtesy of the artist

Extraterrestrial Caves

By courtesy of the artist

What Do We Know About Extraterrestrial Caves?

knowledge

Lava tube caves on a number of bodies (Moon, Mars, etc.)

speculation

- Any planet with a surface will develop cracks
- Cracks provide the foundation for:
 dissolved caves (e.g. limestone, gypsum, salt)
 crust motion (tectonic) caves
 cave-formation mechanisms that don't happen on Earth

Caves from entirely non-Earth processes?
 e.g. sublimation of cometary ices or Martian poles?
 Titan karst in tholin organic goo?

Caves of Europa, P.J. Boston

We've known about extraterrestrial cave-forming processes since the dawn of the Space Age!

Oberbeck, V.R., Quaide, W.L., & Greeley, R.. 1969. On the Origin of Lunar Sinuous Rilles, *Mod. Geol. 1:*75-80,

The Moon - Vallis Schroteri , Aristarchus Image, NASA

Hawaii, Open lava channels forming Image, USGS

Extraterrestrial Lavatubes & Pit Caves

All images, NASA

35 m ↔

Venus

100 meters

Mare Ingenii
100m

Boston, P.J. 2004. Extraterrestrial Caves. *Encyclopedia of Cave and Karst Science*. Fitzroy-Dearborn Publishers, Ltd., London, UK. Pp. 355-358.

Martian Cave Entrance

Compared to an American football field

HiRise data 30 cm resolution Hole is 100 m across!

Martian Cave Entrance

compared to an American sinkhole!

West Desert Sinkhole Utah

Google Earth

Four Windows Lavatube, El Malpais Nat. Monument. Grants, NM Image courtesy of K. Ingham

Granite spalling caves Gallicia, Spain

Lechuguilla Cave, Carlsbad, NM created by sulfuric acid and limestone

Image courtesy D. Bunnell

Parks Ranch Gypsum Cave, Carlsbad, NM

Lilburn Marble Cave, CA

Process-based Cave Classification

CAVE TYPE	Dominant Processes	Parent Materials	Earth Examples	Possible Extraterrestrial Variations
Solutional	Dissolving rock by solvent (With or without chemistry)	Soluble solids plus a solvent	Classic karst, gypsum, halite	Non-water solvents, different thermal regimes
Erosional	Mechanical abrasion via wind, water, grinding, crystal wedging, etc.	Any solid	Sea coast caves, Tafonation, Aeolian rock shelters, etc.	Non-Earth erosional processes, e.g. radiation sputtering, frozen non-water volatile wedging
Tectonic	Fracturing due to internally or externally caused earth movements	Any rocky solid	Seismic caves	Tidal flexure from a massive primary planet or sun, impact fracturing in craters
Suffosional	Cavity construction by the fluid-borne motion of small particles	Unconsolidated sediments	Mud caves, some "thermokarst"	Ground ice sublimation (?) pocking at Mars poles
Phase Transition	Cavity construction by melting, vaporization, or sublimation	Meltable or sublimable materials capable of solidifying at planet-normal temperatures	Lava tube caves, glaciere' caves (i.e. caves in ice as bedrock), "thermokarst"	Perihelionic sublimation of frozen volatiles in comets (Temple), frozen bubbles in non-water ices, non-basalt lavatubes (Io)
Constructional	Negative space left by incremental biological or accretional processes, often around an erodable template	Any solid capable of ordered or non-ordered accretion, or biogenic processing	Coralline algae towers, travertine spring mound caves	Crystallization in non-polar ices leaving voids?

Process-based Cave Classification of Target Bodies

CAVE TYPE	Dominant Processes	Parent Materials	Earth Examples	WHERE????
Solutional	Dissolving rock by solvent (With or "thout chemistry)	Soluble solids pl	Classic karst, gypsum, halite	Earth, Titan, Mars
Erosional		/here should we pu	Sea const caves, ation, ian rock	Earth Mars (aeolian, tafonation) Titan (coastal?) Venus (aeolian?)
Tectonic	or external Vermovements	eres? esta? uto? ercury?	res	Earth, Europa Ganymede? Titan, Enceladus Mars
Suffosional		ranus' moons?	e nokarst	Earth Mars (poles, RSL layers?)
Phase Transition	Cavity construction melting, vaporization, or sublimation	le or able ials cap of ifying at poet-res	La ube caves, glacia caves (i.e. caves in ice as bedrock)	Volcanic bodies (Earth, Mars, Venus, Io) Comets
Constructional	Negative space left by incremental biological or accretional processes, often around an erodable template	Any solid capable of ordered or non-ordered accretion, or biogenic processing	Coralline algae towers, travertine spring mound caves	Earth Mars (spring mound cavities)
Compound Mechanisms *	Catastrophic speleogenesis	Rocky soluble solids	Flynn Creek Impact structure**	Earth Mars

Modified EVEN MORE from P.J. Boston 2004. Extraterrestrial Caves. In, Encyclopedia of Caves and Karst, J. Gunn, ed.

^{*} Boston et al. 2006. In, Karst Geomorphology, Hydrology, & Geochemistry GSA Special Paper 404. Pp. 331-344.

^{**} Milam et al. 2005. Flynn Creek Impact Structure. 69th Ann. Meteoritical Soc. Meeting Field Guide.

Icy Satellites...not "ocean worlds", but planet-sized aqueous caves!

Ice Towers & Caves on Mt. Erebus, Antarctica & Mt. Rainier, WA May be some on Mars, Europa, & Enceladus!

Sulfuric acid (pH=0), H₂ S, CO, & other poisonous gases Cueva de Villa Luz, Tabasco, Mexico, Courtesy Nat. Geogr. Soc.

-3°C, poisonous SO₂ & other gases
Fumarolic Ice Caves, Mt. Rainier, WA, Courtesy Eddy Cartaya

What Kind of Planet Is It?

Planet Type 1 Biosphere

Sunlight "just right" Green Gooey Gases in non-equilibrium

Critical Zone is top-down Photosynthetically driven

Well mixed-Critical Zone

Earth

Planet Type 2 Biosphere

No visible means of support
Not green
Not gooey
Gases in chemical equilibrium
Exceptions dependent upon crustal leakiness

Critical Zone is bottom-up Chemosynthetically driven

Stratified Critical Zone?

Mars

Europa

Biosignature Suites at Many Scales

Red Tulip Microbial Iron Stalagmites, Zoloushka Cave, Ukraine

Poofball Sea, Thrush Cave, SE Alaska

SEMs by M. Spilde & P. Boston

Boston, P.J. et al 2001. Cave biosignature suites: Microbes, minerals and Mars. *Astrobiology* 1(1):25-55.

Whoa! Is this a photoshop hoax?

- Inclusions (holes in the crystals)
- ❖ Solid & fluid
- Iron and manganese deposits on walls & in inclusions

Microbial fossils in inclusions

Live microorganisms encrusting clay & iron oxide walls

Micrographs on left, courtesy of P. Forti

- ❖ Results so far....
- ❖ Xtals ~500, 000+ yrs old (Forti et al., Lauritzen et al.)
- ❖ Sampled inclus. ~10-50, 000 yrs old
- DNA directly recovered & sequenced, ~ 40+ strains
- ♦ 65+ live cultures growing!

30 months after inoculation growth is visible

4.5 years significant mineral

precipitation

SEM backscatter

81780 UX

10 µm

We've now done this 4 times!

In our cave work, we are already dealing with sensitive "alien" biology...

What are these??? Do you know? We don't....

Subsurface geomicrobiology is helping us to prepare for the search for life in caves on Earth, on Mars, & icy moons.

What are these, o Wise Omnipotent Professor Boston?

DNA analysis doesn't help us...
Too many organisms!

Exploration presents unparalleled value but also risk.

That's all Fells."

Wanna See My Chiggers??? Photo courtesy of Kenneth Ingham